Use of Multi-category Proximal SVM for Data Set Reduction

نویسندگان

  • S. V. N. Vishwanathan
  • M. Narasimha Murty
چکیده

In this paper we describe a method for data set reduction by effective use of Multi-category Proximal Support Vector Machine (MPSVM). By using the Linear MPSVM Formulation in an iterative manner we identify the outliers in the data set and eliminate them. A k-Nearest Neighbor (k-NN) classifier is able to classify points using this reduced data set without significant loss of accuracy. We present experiments on a well known large OCR data set to validate our claims.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Virtual Laboratory Teaching Quality Evaluation Model Based on Rough Set and Support Vector Machine

Virtual laboratory teaching quality evaluation helps to realize scientific teaching management. Virtual laboratory teaching quality evaluation is multi-level and multi-objective system engineering. In this paper, a teaching quality evaluation model based on rough set (RS) and on improved Binary-Tree and multicategory support vector machine (SVM) was provided. Firstly, the attribute reduction of...

متن کامل

SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS

This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...

متن کامل

Evaluation of recommender systems: A multi-criteria decision making approach

The evaluation and selection of recommender systems is a difficult decision making process. This difficulty is partially due to the large diversity of published evaluation criteria in addition to lack of standardized methods of evaluation. As such, a systematic methodology is needed that explicitly considers multiple, possibly conflicting metrics and assists decision makers to evaluate and find...

متن کامل

Speeding Up Multi-class SVM Evaluation by PCA and Feature Selection

Support Vector Machine (SVM) is the state-of-art learning machine that has been very fruitful not only in pattern recognition, but also in data mining areas, such as feature selection on microarray data, novelty detection, the scalability of algorithms, etc. SVM has been extensively and successfully applied in feature selection for genetic diagnosis. In this paper, we do the contrary,i.e., we u...

متن کامل

Feature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine

Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods.  In filter methods, features subsets are selected due to some measu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001